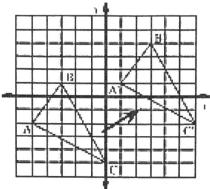
Day 1 – Transformations

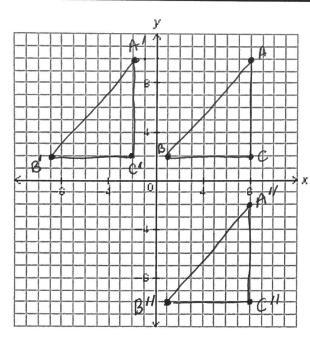
There are many different ways to move a figure on the coordinate plane. Some movements keep the figure the same size and some may make the figure bigger or smaller. These "movements" are called transformations. **Transformations** are the mapping or movement of all the points in a figure on the coordinate plane.



When a figure is the original figure, it is called the **pre-image**. The prefix "pre" means Befere. In the above picture, we would label the points as A, B, and C.

When a figure has been transformed, it is called the **image**. We would label the new points as A', B', and C'. We would say that points A, B, and C have been mapped to the new points A', B', and C'

Exploring Translations



Observation: Did the figures change size or shape after each transformation?

- A. Graph triangle ABC by plotting points A(8, 10), B(1, 2), and C(8, 2).
- B. Translate triangle ABC 10 units to the left to form triangle A'B'C' and write new coordinates.
- C. Translate triangle ABC 12 units down to form triangle A''B''C'' and write new coordinates.

	Coordinates of Triangle ABC	Coordinates of Triangle A'B'C'	Coordinates of Triangle A"B"C"
	A (8, 10)	(8-10,10) (-2,	(8,10-12)
	B (1, 2)	(1-10,2)	(1,2-12)
	C(8, 2))	(8-10)2) (-2,2)	(8,2-12)
•		Changes X	1 changes

Geometry

Unit 2: Coordinate Geometry

Notes

You observed that your four triangles maintained the same shape and size. When a figure keeps the same size and shape, it is called a rigid transformation.

With your experiment, you were performing a translation. A translation is a slide that maps all points of a figure the same distance in the same direction. A translation can slide a figure horizontally, vertically, or both.

Rule for Translations: $(x, y) \rightarrow (x + a, y + b)$

- a → left or right translations (horizontally)
- b → up or down translations (vertically)

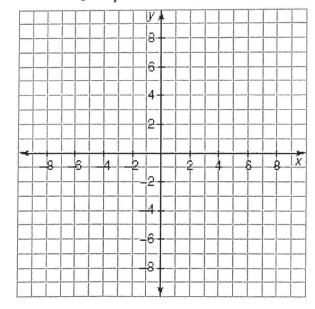
Practice with Translations

Practice:

a. $\triangle ABC$ has vertices A(1, 2), B(3, 6), and C(9, 7). What are the vertices after the triangle is translated 4 units left?

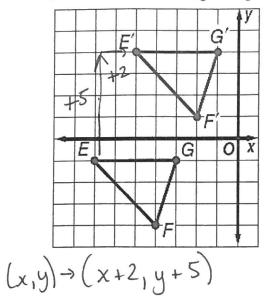
Rule:
$$(x-4,y)$$

New New A'(-3,2) B'(-1,6) C'(5,7) b. ΔXYZ has vertices X(-5, 1), Y(-7, -4), and Z(-2, -4). What are the vertices after the triangle is translated 1 unit right and 6 units up?

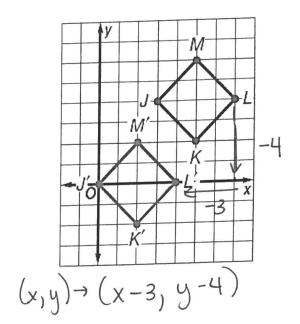


Geometry

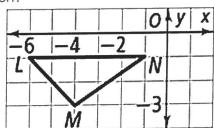
c. Name the rule for the given figures:



Unit 2: Coordinate Geometry



d. The pre-image of ΔLMN is shown below. The image of ΔLMN is $\Delta L'M'N'$ with L'(1, -2), M'(3, -4), and N'(6, -2). What is a rule that describes the translation?



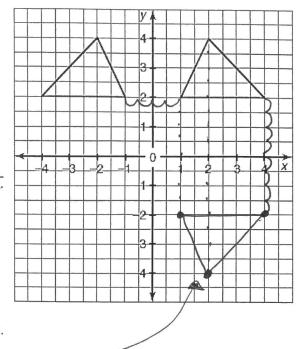
$$L(-6,-1)$$
 $L'(1,-2)$
 $M(-4,-3)$ $M'(3,-4)$
 $N(-1,-3)$ $N'(6,-2)$
 $(x,y) \rightarrow (x+7,y-1)$

Reflections

1. Look at the two triangles in the figure. . Do you think they are congruent?

Yes - Same site Same shape

Figures that are mirror images of each other are called reflections. A reflection is a transformation that "flips" a figure over a reflection line. A reflection line is a line that acts as a mirror so that corresponding points are the same distance from the mirror. Reflections maintain shape and size; they are our second type of rigid transformation. I to the line of reflect.



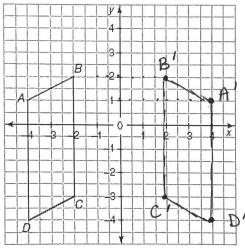
2. What do you think the reflection line is in the diagram?

- 3. Draw a triangle that would be a reflection over the x-axis.
- 4. What do you notice about the reflected triangles' points in relation to the pre-image?

 Over the y-axis (the x-values became apposites) over the x-axis (the y-values became opposites)

Reflection over y-axis Change X

Reflect parallelogram ABCD over the y-axis using reflection lines. Record the points in the table.

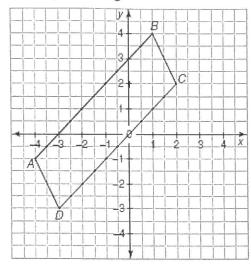


	Pre-Image	Image
Α	(-4,1)	(4,1)
В	(-2, 2)	(a,a)
С	(-2, -3)	(2,-3)
D	(-4, -4)	(4,-4)
Rule	(x, y)	(-x,y)

Reflection over x-axis

Change y

Reflect parallelogram ABCD over the x-axis using reflection lines. Record the points in the table

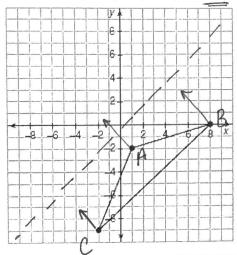


	Pre-Image	Image
Α	(-4, -2)	(-4,2)
В	(1,4)	(1,-4)
С	(2,2)	(2,-2)
D	(-3,-3)	(-3, 3)
Rule	(x, y)	(x,-y)

Reflection over y = x

(Switch X, y)

Reflect the triangle over the y = x using reflection lines. Record the points in the table

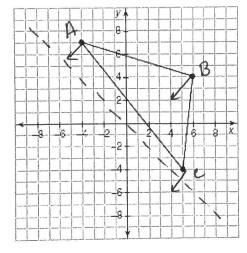


	Pre-Image	Image
Α	(1,-2)	(-2,1)
В	(8,0)	(0,8)
С	(-2, -9)	(-9, -2)
Rule	(x, y)	(y,x)

Reflection over y = -x

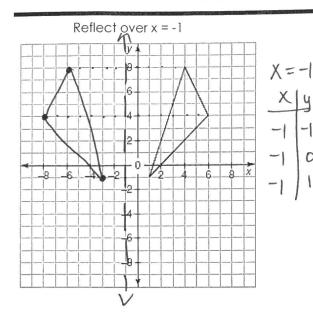
Switch + opposites)

Reflect triangle ABC over the y = -x using reflection lines. Record the points in the table

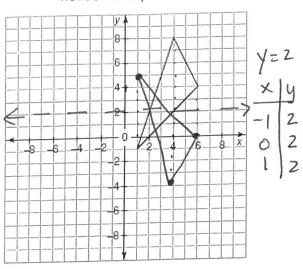


	Pre-Image	lmage
Α	(-4,7)	(-7,4)
В	(6,4)	(-4, -6)
С	(5,-4)	(4, -5)
Rule	(x, y)	(-y,-x)

Reflection over Horizontal and Vertical Lines (Count distance



Reflect over y = 2



Practice with Reflections

Given triangle MNP with vertices of M(1, 2), N(1, 4), and P(3, 3), reflect across the following lines of reflection:

$$(x,y) \rightarrow x$$

$$M(1,2) \rightarrow (1,-2)$$
 $M(1,2) \rightarrow (-1,2)$ $M(1,2) \rightarrow (2,1)$

$$N(1,4) \rightarrow (1,-4)$$
 $N(1,4) \rightarrow (-1,4)$ $N(1,4) \rightarrow (4,1)$

$$P(3,3) \rightarrow (3,-3)$$
 $P(3,3) \rightarrow (-3,3)$ $P(3,3) \rightarrow (3,3)$

$$y$$
-axis y $(x, y) \rightarrow$

$$M(1,2) \rightarrow (-1,2)$$

$$P(3,3) \rightarrow (-3,3)$$

$$(x, y) \rightarrow y = 1$$

$$M(1,2) \rightarrow (2,1)$$

$$N(1,4) \rightarrow (4,1)$$

$$P(3,3) \to (3,3)$$

$$(x, y) \Rightarrow x = 0$$

$$M(1,2) \rightarrow \left(-2_{1}-1\right)$$

$$N(1,4) \rightarrow \left(-4,-1\right)$$

$$P(3,3) \to (-3,-3)$$