Unit 1: Basics of Geometry and Proofs

After completion of this unit, you will be able to...

Learning Target \#1: Recognize and Use Geometric Segment and Angle Relationships

- Name angles and lines
- Define and recognize the following relationships
- Complementary and Supplementary Angles
- Linear Pair
- Vertical Angles
- Midpoint
- Angle and Segment Bisector
- Angle Addition and Segment Addition
- Perpendicular Lines
- Parallel Line Relationships (Alt. Int, Alt. Ext, Consecutive Int., Consecutive Ext., Corresponding)
- Use the relationships to find missing segment lengths and angles

Learning Target \#2: Algebraic and Geometric Proof

- Prove algebraically a geometric relationship using a two column proof
- Prove theorems about lines and angles using a two column proof
- Prove theorems about parallel lines using a two column proof

Basics of Geometry

Naming Angles and Lines

| Point |
| :---: | :---: |
| Points are named
 with capital letters. |
| Two points are connected with a straight line. This line segment can be |
| named $\overline{A B}$ or $\overline{B A}$. |

Rays start with a point but continue to infinity in one direction. Rays are named using its starting point and one other point on the ray. The ray can be named $\overrightarrow{A B}$ but NOT $\overrightarrow{B A}$.

Angles are made up of two rays that have the same beginning point. The
point is called the vertex and the two rays are called the side of the angle.
Angles can be name in ways:

a. Name the angle in four ways:

b. Name angle 1 as many ways as possible:

TYPES OF ANGLES

Acute Angles

Obtuse Angles
Acute angles have measures between \qquad \& \qquad Obtuse Angles have measures between \qquad \& \qquad

Right Angles

Right Angles measure exactly \qquad

Straight Angles

Straight Angles measure exactly \qquad

Important Geometry Symbols

\angle Angle
Congruent Angles
\cong Congruent (same shape \& size)
\perp Perpendicular (90 degrees)
|| Parallel \sim Similar

- Degrees
m Measure of
Δ Triangle

Parale

\qquad

Practice: Take the following statement: I do my homework; I get my allowance, and write it in if-then form and then write the converse of it.

Supplementary and Complementary Angles

Complementary Angles: Two or more angles whose sum of measures equals 90°.
40° and 50° angles are complementary angles because $40^{\circ}+50^{\circ}=90^{\circ}$.
Example: A 30° angle is called the complement of the 60° angle.
Similarly, the 60° angle is the complement of the 30° angle.

Practice: Find the complement of each angle.
a. 35°
b) Two angles, $2 x^{\circ}$ and $3 x^{\circ}$ are complementary. Find the value of x and each angle.

Supplementary Angles: Two or more angles whose sum of measures equals 180°.
60° and 120° angles are supplementary angles because $60^{\circ}+120^{\circ}=180^{\circ}$.
Example: A 70° angle is called the supplement of the 110° angle.
Similarly, the 110° angle is the supplement of the 70° angle.

Practice: Find the supplement of each angle.
a.) 126°
b) Two angles, $4 x^{\circ}$ and $6 x^{\circ}$ are supplementary. Find the value of x and each angle.

Special Pairs of Angles

Linear Pair: Two adjacent (next to) angles whose noncommon sides are opposite rays. A linear pair also forms a line (supplementary).
a. Name all the linear pairs in the diagram below:

b. Solve for x :

Vertical Angles: Two nonadjacent angles that are formed by two intersecting lines. Vertical angles are congruent.
a. Name all the vertical angles in the diagram below:

[^0]

Angle \& Segment Relationships

Angle Addition Postulate: If point D lies in the interior of $\angle A B C$, then $m \angle A B D+m \angle D B C=m \angle A B C$.
a. Find the measure of $\angle \mathrm{PTM}$:

b. Given $\mathrm{m} \angle \mathrm{QST}=135^{\circ}$, find $\mathrm{m} \angle \mathrm{QSR}$.

Perpendicular: Two lines, rays, or segments that intersect to form a 90° angle.
a. Name all the angles you know are right angles.

b. Solve for x.

Angle Bisector: A ray that divides an angle into two congruent angles (two angles with equal measure).
a. $\overline{Q S}$ bisects $\angle P Q R$. Find $m \angle P Q S$.

b. $\quad \overline{K M}$ bisects $\angle J K L$. Find the value of x .

c. Solve for x.

Segment Relationships

Segment Addition Postulate: If point B is on $\overline{A C}$, and between points A and C, then $\overline{A B}+\overline{B C}=\overline{A C}$.
a. Use the diagram to find $\overline{\mathrm{EF}}$.

b. Write an expression for AC.

c. Find the value of z.

c. T is the midpoint of $\overline{Q R}$. Solve for x .

Segment Bisector: A line, line segment, or ray that divides the line segment into two line segments of equal length.
a. Find $\overline{C B}$ and $\overline{A B}$.

b. Determine if you have enough information to determine if $\overline{P C}$ is the segment bisector of $\overline{A B}$. Explain why or why not.

Perpendicular Bisector: A line, line segment, or ray that intersects at the midpoint of a line segment at a 90 degree angle.
a. Determine if you have enough information to determine if $\overline{W Y}$ is the perpendicular bisector of $\overline{Z X}$. Explain why or why not.

Parallel Lines

Definition:

Parallel Lines are two lines that never intersect. They are always the same distance apart.

Alternate Exterior Angles

Definition:
\qquad of the parallel lines and on \qquad sides.

Alternate Exterior Angles Theorem:

If 2 \qquad are cut by a transversal, then the pairs of alternate exterior angles are

\qquad —.

Other Alternate Exterior Angles:

Alternate Interior Angles

Definition:
Two angles in the \qquad of the parallel lines and on sides.

Alternate Interior Angles Theorem:

If 2 \qquad are cut by a transversal, then the pairs of alternate interior angles are
\qquad .

Other Alternate Interior Angles:

Consecutive (Same Side) Exterior Angles

Definition:
Two angles in the \qquad of the parallel lines and on
\qquad sides.

Consecutive (Same Side) Exterior Angles Theorem:

If 2 \qquad are cut by a transversal, then the pairs of consecutive exterior angles are
\qquad —.

Other Same Side Exterior Angles:

Definition:

Two angles in the \qquad of the parallel lines and on
\qquad sides.

Consecutive (Same Side) Interior Angles Theorem:
If 2 \qquad are cut by a transversal, then the pairs of
consecutive interior angles are \qquad .
Other Same Side Interior Angles:

Corresponding Angles

Definition:
Two angles that lie in the \qquad .

Corresponding Angles Postulate:

If 2 \qquad are cut by a transversal, then the pairs of corresponding angles are \qquad .

Other Corresponding Angles:

Transversal

Definition:

A \qquad is a line that intersects two or more coplanar lines
 at different points.

Summary of Parallel Line Relationships

Relationships with Parallel \& Non Parallel Lines		
Angle Type	Parallel Lines	Non Parallel Lines
Alternate Exterior Angles		
Alternate Interior Angles		
Same Side Exterior Angles		
Same Side Interior Angles		
Corresponding Angles		
Vertical Angles		

Practice:

1. If the measure of angle $1=67^{\circ}$ and a is parallel to d, find all other angles of the same measure.

2. Find the measure of the following:
a. Solve for x :
b. $m \angle E C F$
c. $m \angle D C E$
3. Find the measure of the following:
a. Solve for x :
b. $m \angle E D G$
c. How did you solve for x ? What is another way you could have solved for x ?

\qquad
4. What is the value of x, y, n, and a ?

$x=? \quad y=?$

\qquad
\qquad
$\mathrm{n}=$ \qquad
$a=$ \qquad

Intro to Proofs (Algebraic)

1. Solve the following equation. Justify each step as you solve it.

$$
2(4 x-3)-8=4+2 x
$$

2. Rewrite your proof so it is "formal" proof.
$2(4 x-3)-8=4+2 x$

When writing an algebraic proof, you create a chain of logical steps that move from the hypothesis to the conclusion of the conjecture you are proving. By proving the conclusion is true, you have proven the original conjecture is true.

When writing a proof, it is important to justify each logical step with a reason. You can use symbols and abbreviations, but they must be clear enough so that anyone who reads your proof will understand them.

Practice \#1:

GIVEN $>\overline{A B} \cong \overline{B C}, \overline{C D} \cong \overline{B C}$

PROVE: $x=6$

What is the length of $\overline{\mathrm{AB}}$?

What is the length of $\overline{C D}$?

Practice \#2:

GIVEN $\mid \overline{S T} \cong \overline{S R}, \overline{Q R} \cong \overline{S R}$

PROVE: $x=1$

Practice: \#3

Prove: $x=7$

GIVEN: $\angle \mathrm{ABD}$ and $\angle \mathrm{BDE}$ are alternate interior angles.

Prove: $m \triangle D B C=120^{\circ}$

Practice: \#5
STATEMENTS
REASONS
GIVEN: $\overline{W X}=\overline{Y Z}$

Y is the midpoint of $\overline{\mathrm{XZ}}$.

$$
\text { Prove: } \overline{\mathrm{WX}}=\overline{\mathrm{XY}}
$$

Geometric Proofs

When writing a geometric proof, you use deductive reasoning to create a chain of logical steps that move from the hypothesis to the conclusion of the conjecture you are proving. By proving the conclusion is true, you have proven the original conjecture is true.

When writing a proof, it is important to justify each logical step with a reason. You can use symbols and abbreviations, but they must be clear enough so that anyone who reads your proof will understand them.

Practice:

Fill in the blanks to complete a two column proof of the Linear Pair Theorem.

Given: Angle 1 and 2 form a linear pair.
Prove: Angle 1 and 2 are supplementary.

Statements

1. $\angle 1$ and $\angle 2$ form a linear pair.
2. $B A$ and $B C$ form a line.
3. $m \angle A B C=180^{\circ}$
4. \qquad
5. \qquad
6. $\angle 1$ and $\angle 2$ are supplementary

Reasons

2. \qquad
3. \qquad
4. Angle Addition Postulate
5. Substitution
6. \qquad

Prove the Vertical Angles Theorem using a two column proof.

Given: Angle 4 and 1 are a linear pair.
Angle 1 and 2 are a linear pair.
Prove: $\angle 2 \cong \angle 4$

Statements

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. Linear Pair Theorem
7. Definition of

Supplementary Angles
6. \qquad 6. Definition of

Supplementary Angles
\qquad
8. \qquad
7. Substitution
8. Subtraction Property
9. Definition of Congruent Angles

Prove the Alternate Interior Angles are Congruent Theorem using a two column proof:
Given: I // m
Prove: $\angle 2 \cong \angle 3$

Statements

1. \qquad
2. \qquad
3. \qquad
4. \qquad

Reasons

1. Given
2. Vertical Angles are Congruent
3. Corresponding Angles Postulate
4. Transitive Property

Prove that Corresponding Angles are congruent using a two column proof:
Given: I // m
Prove: $\angle 1 \cong \angle 3$

Statements

1.1 // m
2. $\angle 1 \cong \angle 2$
3. $\angle 3 \cong \angle 2$
4. $\angle 1 \cong \angle 3$

Reasons

1. \qquad
2. \qquad
3. \qquad
4. \qquad

Prove the following using a two column proof:
Given: $\overleftrightarrow{A C} \perp \overleftrightarrow{D E}$
Prove: $\angle A B D \cong \angle C B D$

Statements

1. \qquad
2.
3.
4. \qquad
5. \qquad

Reasons

1. Given
2. Definition of Perpendicular Lines
3. Definition of Perpendicular Lines
4. Right $\angle \mathrm{s}$ are \cong OR Transitive Prop.
5. Definition of Congruent Angles

Prove the Right Angle Congruence Theorem using a two column proof.
Given: $\angle \mathrm{ACD}$ and $\angle \mathrm{BCD}$ are right angles
Prove: $\angle A C D \cong \angle B C D$

Statements
\qquad
6. $\angle \mathrm{ACD} \cong \angle B C D$

Reasons

1. Given
2. \qquad
3. \qquad
4. \qquad
5. Transitive Property
6. \qquad

Prove the Congruent Supplement Theorem using a two column proof:
Given: $\angle 2 \cong \angle 4$
Angle 1 is supplementary to angle 2 Angle 3 is supplementary to angle 4 Prove: $\angle 1 \cong \angle 3$

Statements

1. $\angle 2 \cong \angle 4$
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. $m \angle 3+m \angle 4=180^{\circ}$
7. \qquad
8. $m \angle 1+m \angle 2=m \angle 3+m \angle 2$
9. \qquad
10. \qquad

Reasons

1. Given
2. Definition of congruent angles
3. Given
4.
5. Defintion of supplementary angles
6. \qquad
7. Substitution Property
8. \qquad
9. Subtraction Property of Equality
10. \qquad

Prove the following using a two column proof:

Given: $m \overline{A X}=m \overline{C X}, m \overline{B X}=m \overline{D X}$
Prove: $m \overline{A B}=m \overline{C D}$

Statements

1. $m \overline{B X}=m \overline{D X}$
2. $m \overline{A X}=m \overline{C X}$
3. $m \overline{A X}+m \overline{B X}=m \overline{C X}+m \overline{B X}$
4. $m \overline{A X}+m \overline{B X}=m \overline{C X}+m \overline{D X}$
5. $m \overline{A X}+m \overline{B X}=m \overline{A B}$
6. $m \overline{C X}+m \overline{D X}=m \overline{C D}$
7. $m \overline{A B}=m \overline{C D}$

Reasons

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad

[^0]: b. Find the measure of angles $1,2,3$, and 4 .
 c. Solve for x. Then determine the measure of angle 1 .

