Prove Statements about Segments and Angles

Writing a two-column proof is a formal way of organizing your reasons to show a statement is true. Each reason in the right-hand column is the explanation for the corresponding statement.

Write a two-column proof for the situations below.

Example 1: Given: $m\angle 1 = m\angle 3$

Prove: $m\angle EBA = m\angle DBC$

Statements	Reasons
$m \leq 1 = m \leq 3$	Given
$m\angle EBA = m\angle 3 + m\angle 2$	Angle Addition Postulate
$m\angle EBA = m\angle 1 + m\angle 2$	Substitution
$m\angle 1 + m\angle 2 = m\angle DBC$	Angle Addition Postulale
MZEBA = MZDBC	Transitive Property of Equality

Example 2: Given: AC = AB + AB

Prove: AB = BC

		B
Statements	Reasons	C
AC = AB + AB	Given	
AB + BC = AC	Segment Addition Post.	
AB + AB = AB + BC	Transitive Prop.	
AB = BC	Subtraction Prop	

The reasons used in a proof can include definitions, properties, postulates, and theorems. A <u>Theorem</u> is a statement that can be proven. Once you have proven a theorem, you can use the theorem as a reason in other proofs.

Theorems:

• Congruence of Segments

Segment congruence is reflexive, symmetric, and transitive.

- **Reflexive** For any segment AB, $\overline{AB} \cong \overline{AB}$
- **Symmetric** If $\overrightarrow{AB} \cong \overrightarrow{CD}$, then $\overrightarrow{CD} \cong \overrightarrow{AB}$
- **Transitive** If $\overrightarrow{AB} \cong \overrightarrow{CD}$ and $\overrightarrow{CD} \cong \overrightarrow{EF}$, then $\overrightarrow{AB} \cong \overrightarrow{EF}$
- Congruence of Angles

Angle congruence is reflexive, symmetric, and transitive.

- **Reflexive** For any angle A, $\angle A \cong \angle A$
- **Symmetric** If $\angle A \cong \angle B$ then $\angle B \cong \angle A$
- o **Transitive** If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$

Remidder.

If AB = CD, then

mAB=mCD

Example 3: Prove this property of midpoints. If you know that M is the midpoint of \overline{AB} , prove that AB is two times AM and AM is one half of AB.

Given: M is the midpoint of \overline{AB}

Then 2 equal pieces are created

Prove: AB = 2 • AM and AM = $\frac{1}{2}AB$

Statements	Reasons
M is the midpoint of \overline{AB}	Given
ABM & MB	Definition of Midpoint
AM = MB	Definition of congruent segments
AM+MB=AB	Segment Addition Postulate
AM + AM = AB	Substitution
2 • AM = AB	Combine like terms
$AM = \frac{1}{2}AB$	Division Property

1Am + IAM 2 AM

Example 4: Complete the proof below.

Given: $\overline{SU} \cong \overline{LR}$, $\overline{TU} \cong \overline{LN}$

S T U

Prove: $\overline{ST} \cong \overline{NR}$

	Statements	Reasons
	$\overline{SU} \cong \overline{LR}, \ \overline{TU} \cong \overline{LN}$	Given
	su=Le, Tu=LN	Definition of Congruent Segments
j	SU = ST + TÚ	Segment Addition Postulate
_	LR = LN + NR	Segment Addition Postulate
	ST + TU = LN + NR	Transitue Pop.
	ST + LN = LN + NR	Sabrachon Prop. Substitution
	ST = NR	Subtraction Prop
	STE YE TIR	Def. of Congnient Segments

They share su=LR

Skills Practice

Name the property illustrated by the statement.

1. If $\overline{DG} \cong \overline{CT}$, then $\overline{CT} \cong \overline{DG}$

∠VWX ≅ ∠VWX

3. If $\overline{JK} \cong \overline{MN}$ and $\overline{MN} \cong \overline{XY}$, then $\overline{JK} \cong \overline{XY}$

4. YZ = ZY

Property: <u>Symmetric Prop.</u> Property: <u>Reflexive Prop.</u> Property: <u>Trans itvie Prop</u>

Property: Symmetric Prop.

Use the property complete the statement.

5. Reflexive Property of Congruence: $SE \cong \overline{SE}$

6. Symmetric Property of Congruence: If $\angle JKL \cong \angle LRST$, then $\angle RST \cong \angle JKL$

7. Transitive Property of Congruence: If $\angle F \cong \angle J$ and $\angle J \cong \angle J$, then $\angle F \cong \angle L$

Complete the proofs below.

8. Given: AB = 5, BC = 6

Prove: AC = 11

Statements	Reasons	
AB = 5, BC = 6	Given	
AB+BC = AC	Segment Addition Postulate	
5+6=AC	Substitution Property	
Gressott 11=AC	Combine Like terms / Simplify	
AC=11	Synmetric Pop.	

9. Given: RT = 5, RS = 5, $\overline{RT} \cong \overline{TS}$

Prove: $\overline{RS} \cong \overline{TS}$

share		$\frac{RT}{RT} = \frac{1}{RT}$ $RT = T$ $RS = T$	
	is is	RS	≥ T

	Statements	Reasons	
	RT=5 RS=5	Given	T
	TRT = RS	Transitive Property of Equality	
Ļ	RT = TS	Def. of Congruent Segr	nexts
	RS = TS	Substitution	
	RS = TS	Def of Congnext Ses	reuts

10. Given: $m \angle 1 = 45^{\circ}$ and $m \angle 2 = 45^{\circ}$ Prove: \overline{AB} is the bisector of $\angle DAC$

Statements	Reasons
$m\angle 1 = 45^{\circ}$ and $m\angle 2 = 45^{\circ}$	Given
$m \leq 1 = m \leq 2$	Substitution Property of Equality Transitive
∠1≅∠2	Def. of Congrest X's
AB is the bisection	r Def. of Angle Bisector
of LDAC	•

11. Given: \overline{FD} bisects $\angle EFC$ and \overline{FC} bisects $\angle DFB$

Prove: ∠EFD ≅ ∠CFB

Statements	Reasons
FD bisects LEFC	Given
FC bisecte LDFR	Given
∠EFD ≅ ∠DFC	Def. of Angle Bisector
∠DFC ≅ ∠CFB	Def. of Angle Bisector
ZEFD = ZCFB	Transitive Property of Congruence

12. Given: $\angle 1$ and $\angle 2$ are complementary, $\angle 1 \cong \angle 3$, and $\angle 2 \cong \angle 4$

Prove: $\angle 3$ and $\angle 4$ are complementary

Statements	Reasons
11 and 12 are Complex	Given nentary
∠1≅∠3	Given
12214	Given
21=23	Def. of Congruence
12=14	Def. of Congruence
$m \angle 1 + m \angle 2 = 90$	Def. of Complemente
m23+ m24=90	Substitution Property
L3 and L4 are	Def. of Complementary Angles

Complementory

13. Given: $\angle 1$ and $\angle 2$ are complementary and $m\angle 2 = 46^{\circ}$

Prove: $m \angle 1 = 44^{\circ}$

Statements	Reasons 2
21 and 22 are comple	Given
mL2=46	Given
$m \angle 1 + m \angle 2 = 90$	Def. of Complementary Angles
m21+46=90	Substitution Prop
m21=44.	Subtraction Prop.

14. Given: $m \angle 1 + m \angle 2 = 180^{\circ}$ and $m \angle 1 = 62^{\circ}$

Prove: $m\angle 2 = 118^{\circ}$

Statements	Reasons
m/1+m/2=180	Guen
m21=62	Given
62+ m22=180	Substitution Pop.
m22 =118	Subtraction Prop.

Prove Angle Pair Relationships

When two lines intersect, pairs of vertical angles and linear pairs are formed.

Linear Pair Postulate: If two angles form a linear pair, then they are supplementary.

 $\angle 1$ and $\angle 2$ form a linear pair, so $\angle 1$ and $\angle 2$ are supplementary and $m\angle 1 + m\angle 2 = 180^{\circ}$

Vertical Angles Congruence Theorem: Vertical angles are congruent.

 $\angle 1 \cong \angle 3, \angle 2 \cong \angle 4$

Prove the Vertical Angles of Congruence Theorem-

Given: ∠4 and ∠3 are vertical angles

Prove: $\angle 4 \cong \angle 3$

Statements	Reasons
24 and L3are Vertical &'s	Given
∠2 and ∠4 are a linear pair	Def. of a Straight line
12 and 13 are a linear par	Def. of Linear Pair
∠2 and ∠4 are supplementary	Def of a Linear Pair
L2 and L3 are Supplem	Linear Pair Postulate
m22+m24=180	Def. of Supplementary
$m\angle 2 + m\angle 3 = 180^{\circ}$	Def. of Supplementary
m/2+m/3=m/2+m2	Substitution Property
m23 = m24	Subtraction Property
L3 € ∠4	Def. of 2 x1s
∠4 2 ∠3	Symmetric Prop.

Examples:

Use the diagram below to answer the following questions. Note that the diagram is not drawn to scale.

- 1. If $m \angle 1 = 112^{\circ}$, find $m \angle 2$, $m \angle 3$, and $m \angle 4$.
- 2. If $m \angle 2 = 67^{\circ}$, find $m \angle 1, m \angle 3$, and $m \angle 4$.
- 3. If $m \angle 4 = 71^{\circ}$, find $m \angle 1, m \angle 2$, and $m \angle 3$.

4. Multiple Choice: Which equation can be used to find x?

A.
$$32 + (3x + 1) = 90$$

B. $32 + (3x + 1) = 180$
C. $32 = 3x + 1$

C.
$$32 = 3x + 1$$

D.
$$3x + 1 = 212$$

6. Find $m \angle TPS$ in Example 4 above.