Unit 2A Review: Transformations \& Triangle Congruence
 Learning Target \#|: Rigid Transformations

Multiple Choice: Determine the rule described in the transformations below.

1. Which transformation has occurred to quadrilateral AHUP?
a. rotated 90°
b. reflected across x-axis
c. rotated 180°
d. reflected across y-axis

2. Which transformation has occurred to triangle UXS?
a. rotated 90°
b. reflected across x-axis
c. rotated 180°
d. reflected across y-axis

3. Which transformation has occurred to quadrilateral AKJI?
a. reflected across $y=x$
b. rotated 270°
c. reflected across x - axis
d. rotated 360°

4. Which transformation has occurred to quadrilateral BKHP?
a. reflected across $y=x$
b. rotated $270^{\circ} \mathrm{CCW}$
c. reflected across x-axis
d. rotated 360°

Find the coordinates of the vertices of each figure after the transformations. Use the graph below as a visual to help.
5. What would be the vertices of the image if the pre-image had vertices $A(2,-2), B(1,2), C(3,3), D(5,2)$ and they were rotated $180^{\circ} \mathrm{CW}$ about the origin?

a. $\quad A^{\prime}(2,-2), B^{\prime}(-1,2), C^{\prime}(-3,3), D^{\prime}(-5,2)$
b. $A^{\prime}(-2,2), B^{\prime}(-1,-2), C^{\prime}(-3,-3), D^{\prime}(-5,-2)$
c. $A^{\prime}(-2,-2), B^{\prime}(2,-1), C^{\prime}(3,-3), D^{\prime}(2,-5)$
d. $A^{\prime}(2,-2), B^{\prime}(2,1), C^{\prime}(3,-3), D^{\prime}(2,5)$
6. What would be the vertices of the image if the pre-image had vertices $A(2,-2), B(1,2), C(3,3), D(5,2)$ and they were reflected across the x-axis?
a. $\quad A^{\prime}(2,-2), B^{\prime}(-1,2), C^{\prime}(-3,3), D^{\prime}(-5,2)$
b. $\quad A^{\prime}(-2,2), B^{\prime}(-1,-2), C^{\prime}(-3,-3), D^{\prime}(-5,-22)$
c. $A^{\prime}(-2,-2), B^{\prime}(-1,-2), C^{\prime}(-3,-3), D^{\prime}(-5,2)$
d. $\quad A^{\prime}(2,2), B^{\prime}(1,-2), C^{\prime}(3,-3), D^{\prime}(5,-2)$
7. What would be the vertices of the image if the pre-image had vertices $A(2,-2), B(1,2), C(3,3), D(5,2)$ and they were rotated 270° CCW about the origin?
a. $\quad A^{\prime}(2,-2), B^{\prime}(-1,2), C^{\prime}(-3,3), D^{\prime}(-5,2)$
b. $A^{\prime}(-2,2), B^{\prime}(-1,-2), C^{\prime}(-3,-3), D^{\prime}(-5,-2)$
c. $A^{\prime}(-2,-2), B^{\prime}(2,-1), C^{\prime}(3,-3), D^{\prime}(2,-5)$
d. $A^{\prime}(2,-2), B^{\prime}(2,1), C^{\prime}(3,-3), D^{\prime}(2,5)$
8. On the graph to the right draw and label the triangle with vertices $A(-4,5), B(-3,2), C(-1,4)$ after all of the transformations listed below are done. DRAW all the images.
i. Translated 2 unit right and 2 units down
A^{\prime} \qquad B^{\prime} \qquad C^{\prime} \qquad
ii. Reflect across $y=x$
$A^{\prime \prime}$ \qquad $B^{\prime \prime}$ \qquad
\qquad
iii. Rotate 90 degrees CCW about the origin
$A^{\prime \prime \prime}$ \qquad $B^{\prime \prime \prime}$ \qquad $C^{\prime \prime}$ \qquad

9. Name the ordered pair rule that transforms each figure into its image.

Rule: $(x, y) \rightarrow$ \qquad

Rule: $(x, y) \rightarrow$ \qquad

Rule: $(x, y) \rightarrow$ \qquad

10. Which sequence of transformations maps $\triangle \mathrm{ABC}$ to $\Delta \mathrm{RST}$?
A. Reflect $\Delta \mathrm{ABC}$ across the line $x=-1$. Then translate the result 1 unit down.
B. Reflect $\triangle \mathrm{ABC}$ across the line $x=-1$. Then translate the result 5 units down.
C. Translate $\triangle \mathrm{ABC} 6$ units to the right. Then rotate the result 90° clockwise about the point $(1,1)$.
D. Translate $\triangle \mathrm{ABC} 6$ units to the right. Then rotate the result 90° counter-clockwise about the point (1,1).

11. Describe the sequences required for the following transformation below:

12. Quadrilateral $A B C D$ is rotated 90° counterclockwise (or 270 clockwise) about the origin. Name the new coordinates.

Original Coordinates	$A(1,3)$	$B(3,4)$	$C(6,5)$	$D(1,5)$
New Coordinates				

13. A regular pentagon is centered about the origin and has a vertex at $(0,4)$.

Which transformation maps the pentagon to itself?
A. a reflection across line m
B. A reflection across the x-axis.
C. A clockwise rotation of 100° about the origin
D. A clockwise rotation of 144° about the origin

14. Translate the triangle GHI with the vector $\langle-6,3>$, then translate it with the vector $<2,-8>$.

Name the Vertices of the image: $\mathrm{G}^{\prime \prime}$ \qquad $\mathrm{H}^{\prime \prime}$ \qquad I" \qquad

Name a single translation vector that could get from GHI to $\mathrm{G}^{\prime \prime} \mathrm{H}^{\prime \prime} \mathrm{I}^{\prime \prime}$: \qquad
15. Point C is located at $(3,2)$, after reflecting the point over the x-axis, which quadrant will the image of point C be located in?
16. Point F is located at $(-4,2)$, after rotating 90° clockwise about the origin, which quadrant will the image of F be located in?

Learning Target \#2: Congruent Triangles \& Proofs

Complete each congruence statement by naming the corresponding angle or side.
17. $\Delta L K J \cong \triangle L B C$
18. $\Delta V W X \cong \Delta V I J$
19. $\Delta K L M \cong \triangle L K C$
$\angle J L K \cong$ \qquad $\overline{W X} \cong$ \qquad $\angle M \cong$ \qquad

State if the two triangles are congruent. If they are, state how you know.
20.

21.

22.

23.

24.

25.

State what additional information is required in order to know that the triangles are congruent for the reason given.
26. ASA

28. HL

Complete the proofs. 29. - 31.

Given: $\overline{R T} \perp \overline{S V}, \overline{R S} \cong \overline{T V}$
Prove: $\triangle R U S \cong \triangle T U V$
Statements

1. $\overline{R T} \perp \overline{S V} ; \overline{R S} \cong \overline{T V} ; \overline{R U} \cong \overline{T U} \quad 1$ Reasons
2. $\angle 1$ and $\angle 2$ are right angles 2 .
\qquad
3.
4. \qquad
5. $\triangle R U S \cong \triangle T U V$
6. \qquad
7. Given: $\angle W X Z$ and $\angle Y X Z$ are right angles

$$
\overline{W Z} \cong \overline{Y Z}
$$

Prove: $\angle W \cong \angle Y$

4. \qquad 4. \qquad
5. $\triangle A E B \cong \triangle D E C$
5. \qquad
6. $\overline{A E} \cong \overline{D E}$
6. \qquad
Statements

1. $\overline{A B} \| \overline{D C} ; \overline{A B} \cong \overline{D C}$
2.

Reasons
2. \qquad
3. \qquad 3. \qquad

Statements	Reasons
1.	1. Given
2.	2.
3.	3.
4.	4.
$5 . \Delta W X Z \cong \triangle Y X Z$	5.
$6 . \angle W \cong \angle Y$	6.

32. If $\triangle A B C \cong \triangle D E F$ by $A A S$, what additional piece of information needs to be marked?

\qquad \cong \qquad

Test Review 6|6

