Problem of the Day

Full Name:

\qquad Block: \qquad
Geometry: April 29 ${ }^{\text {th }}$
Topic: Proving Rhombus and Squares

DISTANCE FORMULA:	MIDPOINT FORMULA:	SLOPE FORMULA:
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	$\left(x_{m}, y_{m}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Quadrilateral NORA has vertices $N(0,0), O(4,3), R(7,-1)$, and $A(3,-4)$. Using Coordinate Geometry prove that the Quadrilateral is a Square?

Find the length of each side.
$\mathrm{NO}=$ \qquad
$\mathrm{OR}=$ \qquad
$R A=$ \qquad
$N A=$ \qquad

- What conclusions can you make about the relationship of the sides?

Find the length of the diagonals .
$N R=$ \qquad
$\mathrm{OA}=$ \qquad

- What conclusions can you make?

Based on my answers above, I have proven this shape to be a \qquad because...

