Problem of the Day

Full Name:

\qquad Block: \qquad
Geometry: April 28 ${ }^{\text {th }}$
Topic: Proving Parallelogram and Rectangles

$$
\begin{array}{lll}
\text { DISTANCE FORMULA: } & \text { MIDPOINT FORMULA: } & \text { SLOPE FORMULA: } \\
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \left(x_{m}, y_{m}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{array}
$$

The vertices of KARI are $K(2,1), A(4,4), R(10,0)$ and $I(8,-3)$. Show that KARI is a rectangle.
(Remember that you must first show that KARI is a parallelogram, using Slope)
Find the Slope of each side to the nearest tenth.
$K A=$ \qquad
$A R=$ \qquad
$\mathrm{RI}=$ \qquad
$1 K=$ \qquad

Find the Distance of each side to the nearest tenth.

$$
K A=
$$

Find the Diagonals.
$A R=$ \qquad Find the Diagonal: KR = \qquad
$\mathrm{RI}=$ \qquad

IK = \qquad Find the Diagonal $\mathrm{Al}=$ \qquad

Based on my answers above, I have proven this shape to be a \qquad because...

