Intro to Circles and Arcs

Circle	The set of all points in a plane that are equidistant (the length from the radius) from a given point. Center is • A	A. OA
Chord	A segment on the interior of a circle whose endpoints are on the circle.	A . AB
Diameter	A segment between two points on a circle, which passes through the center of the circle . The LONGEST chord of a circle.	$C \longrightarrow D$
Radius	The segment between the center and a point on the circle	A B AB
Secant	A line that intersects a circle at two points on the circle.	E () EF
Tangent	A line that intersects a circle at exactly one point on the circle.	T J
Point of Tangency	A point on the circle where the tangent line touches the circle.	· D

Circles have 360 degrees. Semicircles have 180 degrees.

Example: Name all the parts of the circle:

- Radii: Au, AV, AP
- Diameter: LLV
- Chords: HI, BN MA
- Secant: MN
- Tangent: \leftarrow
- Point of Tangency: X

Practice:

1. Name the following parts of the circle:

- Circle: ① C
- Point of Tangency: . B
- Center: C

- Tangent: QR , QB , BR
- Diameter: BV Secant:
- FV, BY
- All Chards Chords: All Radii: BC, CV, CP
- 2. Use the diagram to answer the following:

Example: Name all the parts of the circle:

Radii: AC, AD, AB

Diameter: CD

Chords: EF, GH

Secant: SH

Tangent:

Point of Tangency:

EXAMPLE: Tell whether the line or segment is best described as a chord, a secant, a tangent, a diameter, or a radius—be specific!

a. AD Diameter b. CD Radius (chord) c. \overline{EG} tangent d. \overline{HB} chord

e. \overline{FB} - nothing g. \overline{FE} tangent \overline{AC} - Radius

Arcs & Central Angles

An **arc** is an unbroken part of a circle consisting of two points called the endpoints and all the points on the circle between them.

Arc or Angle	Definition	Measure	Picture
Minor Arc	An arc whose points are on or in the interior of a central angle. Minor arcs are less than 180° and only use two letters to name them.	The measure of a minor arc is equal to the measure of the central angle.	C AB AB CA = m
Major Arc	An arc whose endpoints are on or in the exterior of a central angle. Major arcs are between 180° and 360°. Three letters are used to name a major arc.	The measure of a major arc is equal to 360° minus the measure of its central angle or minor arc.	ABC= E m LCO
Semicircle	An arc whose endpoints lie on a diameter. Semicircles are named using three letters.	The measure of a semicircle is 180°.	ABC
Central Angle	An angle whose vertex is the center of the circle.	The measure of a central angle is equal to the measure of its minor arc.	c 2COA=
Name	Theorem	Hypothesis	Conclusion
Arc Addition Postulate	The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.	O P	QP+PR = QR

Example: Identify the following arcs are minor, major, or semicircle.

- 1. AE Minor
- 2.FDE Semi-circle
- 3.FA minor 4.DFB Major

Example: Find the measure of the following:

Example: Find the measure of the following:

$$2.m\widehat{NQ} = 110$$

$$2.mNQ = 110$$
 $7.mQMR = 290$

$$3.\text{m}\widehat{NQR} = 180^{\circ}$$
 $8.\text{m}\widehat{PQ} = 30^{\circ}$

$$5.mQR = 70$$

Example: Find the value of x. Then find the measure of arc BC.

$$X + 2x - 30 = 180$$

$$X = 70$$

Example: Find the value of x. Then find the measure of all central angles and arcs.

$$24x = 360$$