Keynotes

Segment Relationships in Triangles

A **midsegment** of a triangle is a segment that joins the <u>midpoints</u> of two sides of the triangle. Every triangle has three midsegments, which forms the midsegment triangle.

<u>Triangle Midsegment Theorem:</u> A midsegment of a triangle is parallel to a side of the triangle, and its length is half the length of that side.

The Midsegment is:

- Parallel to one side of the triangle
- Is half the length of the parallel side
- Connects to the midpoints

Midsegment Triangle:

A DEF

C. Solve for x, y, and z:

Practice:

A. Solve for x:

$$X = \frac{1}{2}(18)$$

D. Given CD = 14, GF = 8, and GC = 5, Find the perimeter of ΔBCD .

B. Solve for x:

$$3x = \frac{1}{2}(84)$$
 $3x = 42$

$$X = \frac{24}{2}(24) = 12$$

 $Y = 180 - 55 = 125^{\circ}$

E. Find the measure of the following:

PM 48.5

ZMLK [02°

Perpendicular Bisectors of Triangles

If you remember from Day 1, perpendicular bisectors are lines, line segments, or rays that intersect at the midpoint of a line segment at a 90 degree angle.

<u>Perpendicular Bisector Theorem</u> If a point is on the perpendicular bisector of a segment, then it is <u>equidistant</u> from the endpoints of the segment.

<u>Converse of the Perpendicular Bisector Theorem:</u> If a point is equidistant from the endpoints of the segment, then it is on the perpendicular bisector of the segment.

Practice:

$$TU = 3(6.5) + 9 = 28.5$$