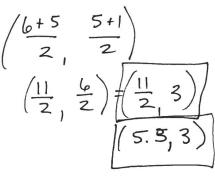

Midpoint Formula Notes

The Midpoint Formula allows you to find the midpoint or center between two points.

1. Find the midpoint between (1, -2) and (-3, 6). $\begin{array}{ccc}
 & \chi_1 & \chi_2 & \chi_2 \\
 & \chi_2 & \chi_2 & \chi_2
 \end{array}$

e midpoint between (1, -2) and (-3, 6).
$$\begin{pmatrix}
1 + (-3) & -2 + 6 \\
\hline
2
\end{pmatrix} = \begin{pmatrix}
-\frac{2}{2} & \frac{4}{2}
\end{pmatrix}$$


3. How would you find the midpoint between the coins and beads?

Coins are located at (5, 5)

Beads are located at (5, 1) $x_2 \quad y_2 \quad / (b+5) \quad 5+1$

Midpoint

 x_m , y_1 4. **M** is the midpoint of segment AB. The coordinates of A are (-2, 3) and the coordinates of M are (1, 0).

the coordinates of B.
$$X_{m} = \frac{X_{1} + X_{2}}{Z} \qquad (x_{1}y_{1}) \qquad (x_{m}, y_{m}) \qquad (x_{2}, y_{2}) \qquad 2 \cdot 1 = -2 + x_{2}$$

$$2 \cdot | = -2 + x_2$$

$$\begin{array}{c|c}
 2 \cdot | = -2 + x_2 \\
 2 - 2 + x_2 \\
 + 2 + 2 \\
 \hline
 4 = x_2
 \end{array}$$

$$\begin{array}{c|c}
 4 - 3 \\
 \hline
 x_2 & y_2
 \end{array}$$

$$y_m = y_1 + y_2$$
 2.0 = $\frac{3 + y_2}{2}$

$$2.0 = \frac{3+42}{2}$$

$$0 = 3 + y_2$$

5. B is the midpoint of segment AC. The coordinates of A are (-10, 4) and the coordinates of B are (-2,4). Find the coordinates of C.

$$x_{m} = \frac{x_{1} + x_{2}}{z}$$

$$x_{m} = \frac{x_{1} + x_{2}}{z}$$

$$x_{m} = \frac{y_{1}}{z}$$

$$y_{m} = \frac{y_{1} + y_{2}}{2}$$

$$2 \cdot 4 = \frac{4 + y_{2}}{2}$$

$$8 = 4 + y_{1}$$