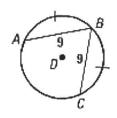

Chord Properties

Name	Theorem	Hypothesis	Conclusion
Congruent Angle- Congruent Chord Theorem	Congruent central angles have congruent chords.	B B	DB = Ac therefore DB = AC
Congruent Chord- Congruent Arc Theorem	Congruent chords have congruent arcs.	$A \longrightarrow C$	DB = Ac therefore BB & AC
Congruent Arc- Congruent Angle Theorem	Congruent arcs have congruent central angles.		∠DOB ≈ DB ∠AOC ≈ AC

Example: Find the measure of arc HY and HYW.

Example: Find the measure of angle DEF.

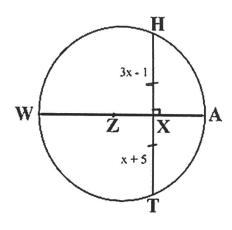


$$5y+5 = 7y-43$$

 $48 = 2y$
 $24 = y$

Example: Answer the following:

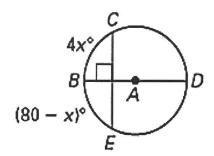
1. If
$$\widehat{mAB} = 110^\circ$$
, find $\widehat{mBC} = 110^\circ$


2. If
$$\widehat{mAC} = 150^{\circ}$$
, find $\widehat{mAB} = 105^{\circ}$

Name	Theorem	Hypothesis	Conclusion
Diameter-Chord Theorem	If a radius or diameter is perpendicular to a chord, then it bisects the chord and its arc.	S K G	FR = RG
Converse of Diameter- Chord Theorem	If a segment is the perpendicular bisector of a chord, then it is the radius or diameter.	S K G T	5T is a diameter b/c is a FG is a 1 bisector

Example: Find the measure of HT. Then find the measure of WA if you know XZ = 6.

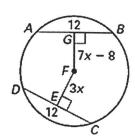
Example: Find the measures of arc CB, BE, and CE.



$$3x-1=x+5$$

$$2x=6$$

$$x=3$$

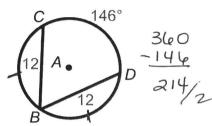

$$HT = 3(3) - 1 = 8$$

 $8 + 8 = 16$

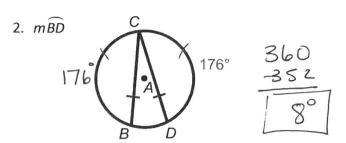
$$4x = 80 - x$$
 $5x = 80$
 $X = 16$
 $CB = 4(16) = 64^{\circ}$
 $BE = 64^{\circ}$
 $CE = 64 + 64 = 128^{\circ}$

Name	Theorem	Hypothesis	Conclusion
Equidistant Chord Theorem	If two chords are congruent, then they are equidistant from the center.	C X A A	THEO SAR
Converse of Equidistant Chord Theorem	If two chords are equidistant from the center, then the chords are congruent.	C A A	If PA = AQ Then CD = Xy

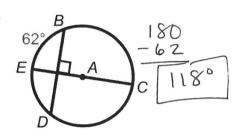
Example: Find EF.

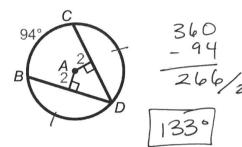

$$7x-8 = 3x$$

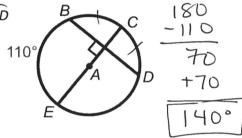
 $-8 = -4x$
 $2 = x$
 $EF = 3(2) = 6$

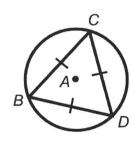

Homework

Find the value of the indicated arc in $\bigcirc A$.

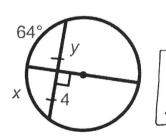






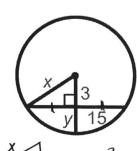

4.
$$\widehat{mBD}$$

5.
$$\widehat{mBD}$$

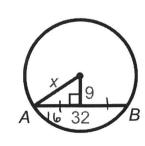


6.
$$\widehat{mBD}$$

Find the value of x and/or y.


7.

$$X = 8$$

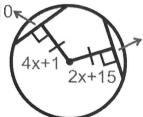

 $\begin{cases} 8 & 6^{2} + 8^{2} = y^{2} \\ 6 & 10 = y \end{cases}$

9.

$$3^2 + 15^2 = X$$

$$234 = x^{2}$$
 $15.3 = X$

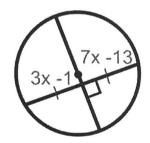
$$16^{2}+9^{2}=\chi^{2}$$
 $337=\chi^{2}$
 $\chi \approx 18.4$


11.

52 = 6x-2

$$\frac{54 = 6x}{91 = x}$$

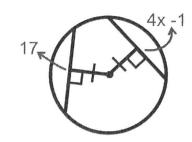
13.

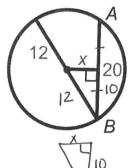


14.

$$2x = 14$$

$$x = 7$$

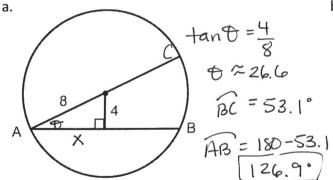

15.



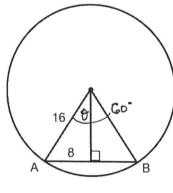
$$3x-1 = 7x-13$$

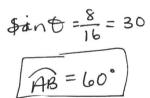
$$\frac{12=4x}{3=x}$$

12.

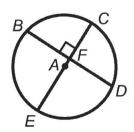


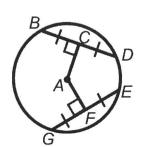
$$|2 = X^{2} + 1$$


$$44 = X^{2}$$

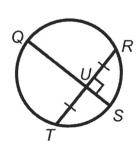

$$6.6 = X$$

16. Find the measure of \widehat{AB} in each diagram below.


b.



In problems 17-19, what can you conclude about the picture? State a theorem that justifies your answer. You may assume that A is the center of the circle.


17.

18.

19.

