
Geometry Addition Practice

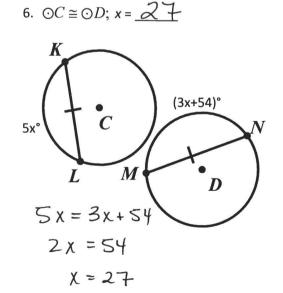
Name: ______Period: ____

Directions: Use the theorems relating to arcs and chords to find the requested information. Figures are not drawn to scale.

1.
$$AB = 10x - 1$$
 and $CD = 2x + 23$; $x = 10$.

2.x= 72

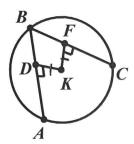
$$4. x^{\circ} = \frac{|b|^{\circ}}{360}$$


$$-38$$

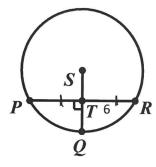
$$-38$$

$$322$$

$$2$$

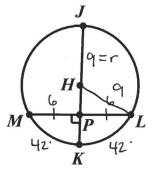


7.
$$\ln \bigcirc K$$
, $\overline{AB} \cong \overline{BC}$.

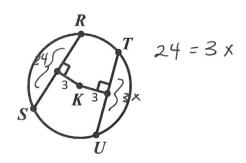

$$DK = 5x + 6$$

$$FK = 2x + 21$$

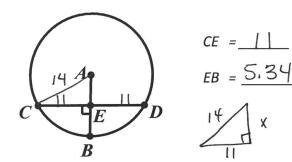
$$x = 5$$


9.
$$\ln \odot S$$
, $\widehat{mPR} = 98^{\circ}$ and $TR = 6$

*The radius is perpendicular to a chord, so it bisects the chord and the arc.


11. In $\bigcirc H$, diameter = 18, LM = 12, and \widehat{mLM} = 84°. Find each measure. (Γ = 9) Round to the nearest hundredth if necessary.

*Use the ideas from #9 and #10 to solve this problem.


6.7 ≈ X

8.
$$\ln \bigcirc K$$
, $SR = 24$, $UT = 3x$ $x =$

10. $\ln \bigcirc A$, radius = 14 and CD = 22

Find CE and EB. Round to 2 decimals.

*To find *CE*: The radius bisects chord \overline{CD} $14^2 = \chi^2 + 11^2$

*To find $EB: \overline{AB}$ is the radius of the circle, but so is \overline{AC} or \overline{AD} . Create a right triangle to use the Pythagorean Theorem to find AE. Then use subtraction to find EB.