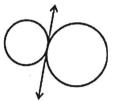
Tangent and Chord Properties

On Day 1, you learned that tangent lines intersect a circle in exactly one place. This leads to several theorems about tangent lines.

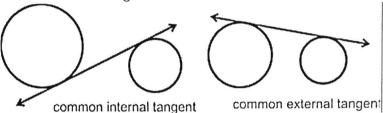
Tangent Circles are two coplanar circles that intersect at exactly one point. They may intersect internally or externally.

internally tangent

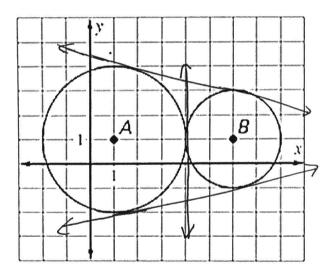


externally tangent

Common Tangent Lines are lines that are tangent to two circles.

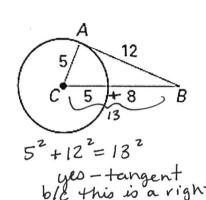


Example: Draw any common tangent lines.

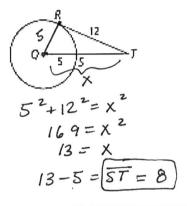


Name	Theorem	Hypothesis	Conclusion
Perpendicular Tangent Theorem	If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.	A D	AD 1 FD
Converse of Perpendicular Tangent Theorem	If a line is perpendicular to a radius of a circle at a point on the circle, then the line is tangent to the circle.	A D	

Example: Is AB tangent to Circle C?



Example: Find ST.

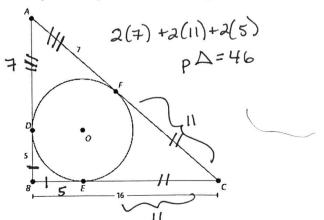


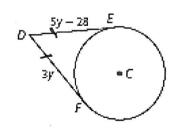
x 2/2.4

Name	Theorem	Hypothesis	Conclusion
Tangent Segments Theorem	If two segments are tangent to a circle from the same external point, then the segments are congruent.	G A B	GC ≅ GB

Example: Find perimeter of triangle ABC.

Example: Find DF if you know that DF and DE are tangent to $\odot C$.





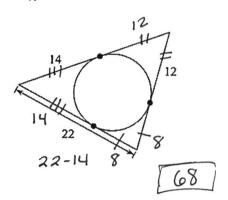
3y = 5y - 28-2y = -28y = 14

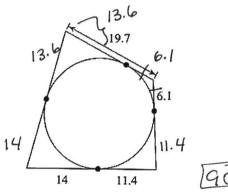
$$DE = 5(14)-28$$

 $DE = 42$

Day 4 Tangent & Chord Properties

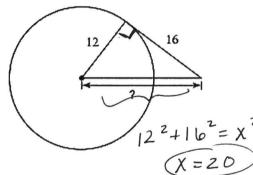
For problems 1-2, find the perimeter of each polygon.





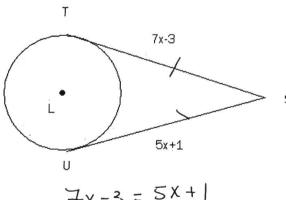
190.2

3. Find the missing segment length.



22 20 $22 + 20^2 = 30^2$ 884 7 900 not tangent , - no right angle.

5. Solve for x.

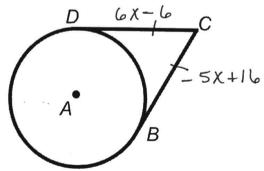


$$7x-3=5x+1$$
 $2x=4$

6. Given CD = 3(2x-2) and CB = -5x+16, find mCD.

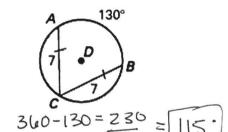
4. JG is the diameter of the circle whose radius

is 11. If PG = 20 and JP = 30, is GP tangent to the circle?

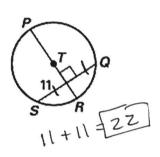


$$6x-6=-5x+16$$
 $11x=22$
 $x=2$
 $mcD=6(2)-6=6$

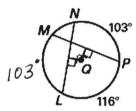
7. Find mAC.



10. Find QS.

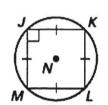


13. Find mMN

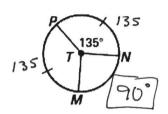


360 - (103+103+116) = 38°

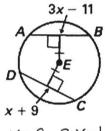
8. Find mLM.



360 4= 9. Find mMN.



11. Solve for x.

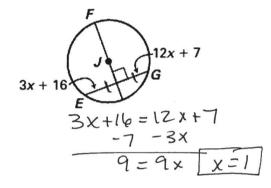


X+9=3X-11+11-X 20=2X

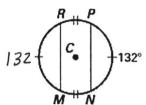
14. Find mMN.

180-20-90 = 700

12. Solve for x.

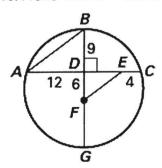


15. Find \widehat{MN} .



360-132-132=96=48

16. Prove ΔABD ~ ΔEFD



AB = DC 12 = 12

$$\frac{AB}{EF} = \frac{BD}{FD} = \frac{AD}{ED}$$

$$\frac{9}{6} = \frac{12}{X}$$

$$9x = 72$$

$$x = 8$$

$$8 + 4 = 12$$

 $SAS \sim 2BDA \cong 2FDC$ $\frac{9}{6} = \frac{12}{8}$

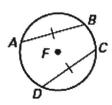
Name:

Date: ____

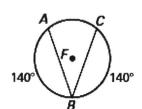
Chord Properties

1-2. What can you conclude from the following pictures?

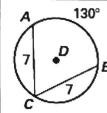
1.



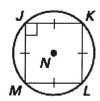
2.



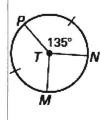
3. Find mAC.



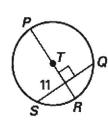
4. Find mLM.



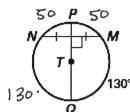
5. Find mMN.



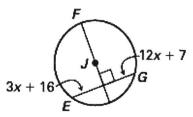
6. Find QS.



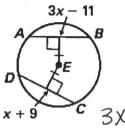
7. Find mMN. = 100



8. Solve for x.



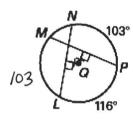
$$9=9\times$$



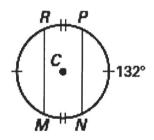
$$3X-11 = X+9$$

 $2X = 20$
 $X = 10$

11. Find mMN.

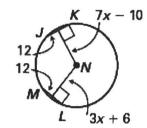


13. Find mMN.



Circles

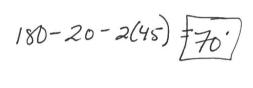
10. Solve for x.



$$7x-10=3x+6$$
 $4x=16$
 $x=4$

Practice

12. Find \widehat{MN} .



14. Prove ΔABD ~ ΔEFD

