2. Now that you have seen how the Pythagorean Theorem relates to the radius of a circle, you will develop that relationship in a more general sense. An *arbitrary point* has been placed on the circle of radius 3. A right triangle has been drawn in for you as well. Label the triangle's legs and hypotenuse, and then write the Pythagorean Theorem that models your triangle.

3. Finally, try to move to a more general circle. This time, not only is the point arbitrary, but the radius is as well. Call the radius *r*. **Similar to problem #2, label the right triangle's legs and hypotenuse and then write the Pythagorean Theorem that models your triangle.**

Circles, Transformed

Standard Form of a Circle where (h,k) is ______ and r is the _____

Using a Circle's Equation

1. Write the equation of each circle below.

Equation: _____

Equation: _____

Equation: _____

Equation: _____

2. Given the equation of the circle, identify the radius and center for each circle. Leave answers in simplest radical form.

$$x^{2} + (y - 8)^{2} = 100 \qquad (x + 1)^{2} + (y - 4)^{2} = 1 \qquad (x - 10)^{2} + (y + 3)^{2} = 50 \qquad (x + 2)^{2} + (y - 2)^{2} = 45$$

Radius: Radius: Radius: Radius:
Center: (,) Center: (,) Center: (,) Center: (,)

3. Use the equation to graph each circle.

$$(x-3)^2 + y^2 = 16$$

$$(x+1)^2 + (y+5)^2 = 1$$

 $(x-5)^2 + (y-5)^2 = 25$

