$\mathbf{P}(\mathbf{A} \mid \mathbf{B})$ asks that we find the probability of $A$ given that we know $B$ has or already occurred. Using a formula find the probability of $A$ given $B$ can be found using $\mathbf{P}(\mathbf{A} \mid \mathbf{B})=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{B})}$


Directions-Leave answers in simplified fraction form and decimals rounded to the nearest hundredth.

1. Determine the following conditional probabilities.

Consider a bag with marbles, 3 blue marbles, 2 red marbles, and 5 green marbles. Three marbles are drawn in sequence and are taken without replacement.

i. $\mathbf{P}\left(2^{\text {nd }}\right.$ draw: blue $\mid$ 1st draw: red $)=$
ii. P P(2nd draw: blue | 1 st draw: blue $)=$
iii. $\mathbf{P}\left(3^{\text {rd }}\right.$ draw: blue $\mid$ 1st draw: red, $2^{\text {nd }}$ draw: blue $)=$
ii. $P \underset{\uparrow}{\mathrm{P}_{1 \text { st }}} \stackrel{\downarrow}{\downarrow}$ draw: blue | 1 st draw: $\left.\mathbf{r e d}\right)=$
2. Determine the following conditional probabilities. Consider drawing 1 card from a standard deck of shuffled cards:
i. $\quad \mathrm{P}($ Queen | Face Card $)=$
ii. P( Ace | Lettered Card) =
iii. P( Heart with a Number \| Red Card) =

3. Consider the following table with information about all of the students taking Statistics at Phoenix High School.
a. $P($ Full-time $\mid$ Male $)=$
c. $P($ Female $\mid$ Part-time $)=$

|  | Full- <br> time | PartTime | Total |
| :---: | :---: | :---: | :---: |
| Female | 28 | 15 | 43 |
| Male | 12 | 16 | 28 |
| Total | 40 | 31 | 71 |

b. $P($ Male | Full-time $)=$
d. $P($ Full-time | Part-time $)=$
4. Given the following VENN Diagram answer the following.
a. $P(A \mid B)=$
c. $P(B \mid A)=$

b. $P\left(A \mid B^{\prime}\right)=$
d. $P\left(B \mid A^{\prime}\right)=$
5. Given the $P(B)=0.6$ and $P(A \mid B)=0.2$, determine the $P(A$ and $B)$.
6. Given the VENN Diagram and $\mathbf{P}(\mathbf{A})=\mathbf{0 . 8}$ and $\mathbf{P}(\mathbf{B} \mid \mathbf{A})=\mathbf{0 . 3}$
a. Determine the $\mathbf{P}(\mathbf{A}$ and $\mathbf{B})$
b. Determine the $\mathbf{P}(\mathbf{B})$

c. Determine the $\mathbf{P}\left(\mathbf{B}^{\prime} \cap \mathbf{A}\right)$
d. Determine the $\mathbf{P}\left((\mathbf{A} \cup \mathbf{B})^{\prime}\right)$

