NOTES: Proving Parallelograms and Rectangles on a Coordinate Plane

PARILLELOGRIMS ON THE COORDINATE PLINE

Objectives:

- Show that a quadrilateral is a parallelogram on the coordinate plane
- Identify and verify parallelograms

DISTANCE FORMULA:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

MIDPOINT FORMULA:
$\left(x_{m}, y_{m}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

SLOPE FORMULA:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Formulas \& THE COORDINATE PLANE	
FORMULA	WHEN TO USE IT
Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	To determine whether... - Sides are congruent - Diagonals are congruent
Midpoint Formula: $\left(x_{m}, y_{m}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$	To determine... - The coordinates of a midpoint of a side - Whether diagonals bisect each other
Slope Formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$	To determine whether... - Opposite sides are parallel - Diagonals are perpendicular - Sides are perpendicular

QUADRILATERAL	PROVE:
Parallelogram	- Both pairs of opposite sides are parallel - Both pairs of opposite sides are congruent - One pair of opposite sides are parallel and congruent - Diagonals bisect each other
Rectangle	First prove it's a parallelogram, and then prove... - The diagonals are congruent - Two consecutive sides of the parallelogram are perpendicular

Proving a Quadrilateral is a Parallelogram

Method: Show both pairs of opposite sides are equal by calculating the distances of all four sides.

1) Plot and label each point. $A(2,4), B(7,9), C(6,3)$, and $D(1,-2)$

Prove it!

Find the length of each side to the nearest tenth.
$A B=$ \qquad
$B C=$ \qquad
$D C=$ \qquad
$D A=$ \qquad

- What conclusions can you make?
(Hint: are any sides the same length)

Find the slope of each side.

Slope of $A B=$ \qquad

Slope of DC = \qquad

Slope of $B C=$ \qquad

Slope of AD $=$ \qquad

- What conclusions can you make? (Hint: are any sides parallel? Perpendicular ?)

Based on my answers above, I have proven this shape to be a \qquad because...

Proving a Quadrilateral is a Rectangle

Method: First, prove the quadrilateral is a parallelogram, then that the diagonals are congruent.
2) Plot and label each point. $A(-3,0), B(-2,3), C(4,1)$, and $D(3,-2)$

Prove it!

Find the length of each side to the nearest tenth.

$$
\begin{aligned}
& A B= \\
& B C= \\
& D C= \\
& D A=
\end{aligned}
$$

- What conclusions can you make? (Hint: are any sides the same length)

Calculate the Distance of the Diagonals.
$A C=$ \qquad
$B D=$ \qquad

- What conclusions can you make? (Hint: are any sides parallel? Perpendicular ?)

Based on my answers above, I have proven this shape to be a \qquad because...

Prove that the quadrilateral with the coordinates $\mathrm{L}(-2,3), \mathrm{M}(4,3), \mathrm{N}(2,-2)$ and $\mathrm{O}(-4,-2)$ is a parallelogram.

Prove a quadrilateral with vertices $\mathrm{G}(1,1), \mathrm{H}(5,3), \mathrm{I}(4,5)$ and $\mathrm{J}(0,3)$ is a rectangle.

