NOTES: Proving Parallelograms and Rectangles on a Coordinate Plane

PARALLELOGRAMS ON THE COORDINATE PLANE

Objectives:

- Show that a quadrilateral is a parallelogram on the coordinate plane
- Identify and verify parallelograms

DISTANCE FORMULA:	MIDPOINT FORMULA:	SLOPE FORMULA:
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$(x_m, y_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	$m = \frac{y_2 - y_1}{x_2 - x_1}$

FORMULAS & THE COORDINATE PLANE		
FORMULA	WHEN TO USE IT	
Distance Formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	To determine whether • Sides are congruent • Diagonals are congruent	
Midpoint Formula: $(x_m, y_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	To determineThe coordinates of a midpoint of a sideWhether diagonals bisect each other	
Slope Formula: $m = \frac{y_2 - y_1}{x_2 - x_1}$	 To determine whether Opposite sides are parallel Diagonals are perpendicular Sides are perpendicular 	

QUADRILATERAL	PROVE:
PARALLELOGRAM	 Both pairs of opposite sides are parallel Both pairs of opposite sides are congruent One pair of opposite sides are parallel and congruent Diagonals bisect each other
RECTANGLE	 First prove it's a parallelogram, and then prove The diagonals are congruent Two consecutive sides of the parallelogram are perpendicular

Proving a Quadrilateral is a Parallelogram

Method: Show both pairs of opposite sides are equal by calculating the distances of all four sides.

1) Plot and label each point. A(2, 4), B(7, 9), C(6, 3), and D(1, -2)

Prove it!

Find the **length** of each side to the nearest tenth.

AB = _____ BC = _____

DC = _____

DA = _____

 What conclusions can you make? (Hint: are any sides the same length)

Find the **slope** of each side.

Slope of AB = _____

Slope of DC = _____

Slope of BC = _____

Slope of AD = _____

• What conclusions can you make? (Hint: are any sides parallel? Perpendicular ?)

Based on my answers above, I have proven this shape to be a ______ because...

Proving a Quadrilateral is a Rectangle

Method: First, prove the quadrilateral is a parallelogram, then that the diagonals are congruent.

2) Plot and label each point. A(-3, 0), B(-2, 3), C(4, 1), and D(3, -2)

Prove it!

Find the **length** of each side to the nearest tenth.

AB = _____

BC = _____

DC = _____

DA = _____

• What conclusions can you make? (Hint: are any sides the same length)

Calculate the Distance of the Diagonals.

AC = _____

BD = _____

• What conclusions can you make? (Hint: are any sides parallel? Perpendicular ?)

Based on my answers above, I have proven this shape to be a ______ because... Prove that the quadrilateral with the coordinates L(-2,3), M(4,3), N(2,-2) and O(-4,-2) is a parallelogram.

Prove a quadrilateral with vertices G(1,1), H(5,3), I(4,5) and J(0,3) is a rectangle.

