Try: JM and MK are tangent to circle L. Find the value of x. Quadrilateral POST is circumscribed about circle Y. OR = 13 in. and ST = 12 in. Find the perimeter of POST. $$=$$ $4(13) + 4(6) = P$ $P = 76in$ 2, \overline{NA} and \overline{NO} are tangent to circle G. Find the value of x. 4. Ray k is tangent to circle R. What is the value of y? ## **Chord Properties** | Name | Theorem | Hypothesis | Conclusion | |--|---|-------------|--| | Congruent Angle-
Congruent Chord
Theorem | Congruent central
angles have congruent
chords. | B
B
C | ∠DOB ~ ZAOC
DB ~ AC | | Congruent Chord-
Congruent Arc Theorem | Congruent chords have congruent arcs. | D B B | DB = AC DB = AC | | Congruent Arc-
Congruent Angle
Theorem | Congruent arcs have congruent central angles. | B
A
C | DB = Ac
ZDOB = ZACC
BC = DA
ZDOA = ZBOC | **Example:** Find the measure of arc HY and HYW. Example: Use the diagram of $\odot D$. 1. If $$\widehat{mAB} = 110^\circ$$, find $\widehat{mBC} = 110^\circ$ 2. If $$\widehat{mAC} = 150^\circ$$, find \widehat{mAB} . $360 - 150 = 210 = 105^\circ$ Try: 1. Find the measure of arc YZ if the measure of arc $XW = 95^{\circ}$ Example: Find the measure of angle DEF. 2. Given $\widehat{mAB} = 45^{\circ}$ and $\widehat{mBC} = 22^{\circ}$. \widehat{mAD} **★ Skills Practice** 1. In the diagram below, AB = BD = 5 and AD = 7. Is \overline{BD} tangent to $\odot C$? Explain. $$5^{2} + 5^{2} = 7^{2}$$ $25 + 25 = 49$ $50 \neq 49$ No, BD is not tangent b/c it is not a 90° angle. Pythagokan Thm does 2. \overline{AB} is tangent to $\odot C$ at A and \overline{DB} is tangent to $\odot C$ at D. Find the value of x. | Name | Theorem | Hypothesis | Conclusion | |--|---|------------|-------------------------------| | Diameter-Chord
Theorem | If a radius or diameter is perpendicular to a chord, then it bisects the chord and its arc. | S K F T | FR = RG
FT = GT | | Converse of Diameter-
Chord Theorem | If a segment is the perpendicular bisector of a chord, then it is the radius or diameter. | S K TR | KT or ST
radius / diameter | **Example:** Find the measure of \underline{HT} . Then find the measure of WA if you know XZ = 6. **Example:** Find the measures of arc CB, BE, and CE. | Name | Theorem | Hypothesis | Conclusion | |--|--|------------|------------------| | Equidistant Chord
Theorem | If two chords are congruent, then they are equidistant from the center. Same distance | C X A | CD = xy AP = AQ | | Converse of Equidistant
Chord Theorem | If two chords are
equidistant from the
center, then the chords
are congruent. | C X X X | AP & AQ CO & XY | Example: Find EF. = $$3(2) = 6$$ 1. Find the measure of EG. **Example:** Are segments TQ and UQ congruent? 2. Is segment QS a diameter? Explain your reasoning.